# On Polyhedral Realization with Isosceles Triangles

Answering a question posed by Joseph Malkevitch, we prove that there exists a polyhedral graph, with triangular faces, such that every realization of it as the graph of a convex polyhedron includes at least one face that is a scalene triangle. Our construction is based on Kleetopes, and shows that there exists an integer i such that all convex i-iterated Kleetopes have a scalene face. However, we also show that all Kleetopes of triangulated polyhedral graphs have non-convex non-self-crossing realizations in which all faces are isosceles. We answer another question of Malkevitch by observing that a spherical tiling of Dawson (2005) leads to a fourth infinite family of convex polyhedra in which all faces are congruent isosceles triangles, adding one to the three families previously known to Malkevitch. We prove that the graphs of convex polyhedra with congruent isosceles faces have bounded diameter and have dominating sets of bounded size.

READ FULL TEXT