On perfectly matched layers of nonlocal wave equations in unbounded multi-scale media

02/21/2022
by   Yu Du, et al.
0

A nonlocal perfectly matched layer (PML) is formulated for the nonlocal wave equation in the whole real axis and numerical discretization is designed for solving the reduced PML problem on a bounded domain. The nonlocal PML poses challenges not faced in PDEs. For example, there is no derivative in nonlocal models, which makes it impossible to replace derivates with complex ones. Here we provide a way of constructing the PML for nonlocal models, which decays the waves exponentially impinging in the layer and makes reflections at the truncated boundary very tiny. To numerically solve the nonlocal PML problem, we design the asymptotically compatible (AC) scheme for spatially nonlocal operator by combining Talbot's contour, and a Verlet-type scheme for time evolution. The accuracy and effectiveness of our approach are illustrated by various numerical examples.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset