On P Versus NP

05/02/2020
by   Lev Gordeev, et al.
0

I generalize a well-known result that P = NP fails for monotone polynomial circuits - more precisely, that the clique problem CLIQUE(k^4,k) is not solvable by Boolean (AND,OR)-circuits of the size polynomial in k. In the other words, there is no Boolean (AND,OR)-formula F expressing that a given graph with k^4 vertices contains a clique of k elements, provided that the circuit length of F, cl(F), is polynomial in k. In fact, for any solution F in question, cl(F) must be exponential in k. Moreover this holds also for DeMorgan normal (abbr.: DMN) (AND,OR)-formulas F that allow negated variables. Based on the latter observation I consider an arbitrary (AND,OR,NOT)-formula F and recall that standard NOT-conversions to DMN at most double its circuit length. Hence for any Boolean solution F of CLIQUE(k^4,k), cl(F) is exponential in k. I conclude that CLIQUE(k^4,k) is not solvable by polynomial-size Boolean circuits, and hence P is not NP. The entire proof is formalizable by standard methods in the exponential function arithmetic EFA.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset