On non-iterative training of a neural classifier

12/14/2015
by   K. Eswaran, et al.
0

Recently an algorithm, was discovered, which separates points in n-dimension by planes in such a manner that no two points are left un-separated by at least one plane[1-3]. By using this new algorithm we show that there are two ways of classification by a neural network, for a large dimension feature space, both of which are non-iterative and deterministic. To demonstrate the power of both these methods we apply them exhaustively to the classical pattern recognition problem: The Fisher-Anderson's, IRIS flower data set and present the results. It is expected these methods will now be widely used for the training of neural networks for Deep Learning not only because of their non-iterative and deterministic nature but also because of their efficiency and speed and will supersede other classification methods which are iterative in nature and rely on error minimization.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro