On Multi-Layer Basis Pursuit, Efficient Algorithms and Convolutional Neural Networks

06/02/2018
by   Jeremias Sulam, et al.
0

Parsimonious representations in data modeling are ubiquitous and central for processing information. Motivated by the recent Multi-Layer Convolutional Sparse Coding (ML-CSC) model, we herein generalize the traditional Basis Pursuit regression problem to a multi-layer setting, introducing similar sparse enforcing penalties at different representation layers in a symbiotic relation between synthesis and analysis sparse priors. We propose and analyze different iterative algorithms to solve this new problem in practice. We prove that the presented multi-layer Iterative Soft Thresholding (ML-ISTA) and multi-layer Fast ISTA (ML-FISTA) converge to the global optimum of our multi-layer formulation at a rate of O(1/k) and O(1/k^2), respectively. We further show how these algorithms effectively implement particular recurrent neural networks that generalize feed-forward architectures without any increase in the number of parameters. We demonstrate the different architectures resulting from unfolding the iterations of the proposed multi-layer pursuit algorithms, providing a principled way to construct deep recurrent CNNs from feed-forward ones. We demonstrate the emerging constructions by training them in an end-to-end manner, consistently improving the performance of classical networks without introducing extra filters or parameters.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset