On Multi-Channel Huffman Codes for Asymmetric-Alphabet Channels

05/08/2021 ∙ by Hoover H. F. Yin, et al. ∙ 0

Zero-error single-channel source coding has been studied extensively over the past decades. Its natural multi-channel generalization is however not well investigated. While the special case with multiple symmetric-alphabet channels was studied a decade ago, codes in such setting have no advantage over single-channel codes in data compression, making them worthless in most applications. With essentially no development since the last decade, in this paper, we break the stalemate by showing that it is possible to beat single-channel source codes in terms of compression assuming asymmetric-alphabet channels. We present the multi-channel analog of several classical results in single-channel source coding, such as that a multi-channel Huffman code is an optimal tree-decodable code. We also show some evidences that finding an efficient construction of multi-channel Huffman codes may be hard. Nevertheless, we propose a suboptimal code construction whose redundancy is guaranteed to be no larger than that of an optimal single-channel source code.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.