On Learning Universal Representations Across Languages
Recent studies have demonstrated the overwhelming advantage of cross-lingual pre-trained models (PTMs), such as multilingual BERT and XLM, on cross-lingual NLP tasks. However, existing approaches essentially capture the co-occurrence among tokens through involving the masked language model (MLM) objective with token-level cross entropy. In this work, we extend these approaches to learn sentence-level representations, and show the effectiveness on cross-lingual understanding and generation. We propose Hierarchical Contrastive Learning (HiCTL) to (1) learn universal representations for parallel sentences distributed in one or multiple languages and (2) distinguish the semantically-related words from a shared cross-lingual vocabulary for each sentence. We conduct evaluations on three benchmarks: language understanding tasks (QQP, QNLI, SST-2, MRPC, STS-B and MNLI) in the GLUE benchmark, cross-lingual natural language inference (XNLI) and machine translation. Experimental results show that the HiCTL obtains an absolute gain of 1.0 accuracy on GLUE/XNLI as well as achieves substantial improvements of +1.7-+3.6 BLEU on both the high-resource and low-resource English-to-X translation tasks over strong baselines. We will release the source codes as soon as possible.
READ FULL TEXT