On Learning Universal Representations Across Languages

07/31/2020
by   Xiangpeng Wei, et al.
0

Recent studies have demonstrated the overwhelming advantage of cross-lingual pre-trained models (PTMs), such as multilingual BERT and XLM, on cross-lingual NLP tasks. However, existing approaches essentially capture the co-occurrence among tokens through involving the masked language model (MLM) objective with token-level cross entropy. In this work, we extend these approaches to learn sentence-level representations, and show the effectiveness on cross-lingual understanding and generation. We propose Hierarchical Contrastive Learning (HiCTL) to (1) learn universal representations for parallel sentences distributed in one or multiple languages and (2) distinguish the semantically-related words from a shared cross-lingual vocabulary for each sentence. We conduct evaluations on three benchmarks: language understanding tasks (QQP, QNLI, SST-2, MRPC, STS-B and MNLI) in the GLUE benchmark, cross-lingual natural language inference (XNLI) and machine translation. Experimental results show that the HiCTL obtains an absolute gain of 1.0 accuracy on GLUE/XNLI as well as achieves substantial improvements of +1.7-+3.6 BLEU on both the high-resource and low-resource English-to-X translation tasks over strong baselines. We will release the source codes as soon as possible.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset