On Learnability under General Stochastic Processes

05/15/2020
by   A. Philip Dawid, et al.
University of Michigan
University of Cambridge
12

Statistical learning theory under independent and identically distributed (iid) sampling and online learning theory for worst case individual sequences are two of the best developed branches of learning theory. Statistical learning under general non-iid stochastic processes is less mature. We provide two natural notions of learnability of a function class under a general stochastic process. We are able to sandwich the first one between iid and online learnability. We show that the second one is in fact equivalent to online learnability. Our results are sharpest in the binary classification setting but we also show that similar results continue to hold in the regression setting.

READ FULL TEXT

page 1

page 2

page 3

page 4

11/01/2018

Online Learning Algorithms for Statistical Arbitrage

Statistical arbitrage is a class of financial trading strategies using m...
12/29/2021

Universal Online Learning with Bounded Loss: Reduction to Binary Classification

We study universal consistency of non-i.i.d. processes in the context of...
08/18/2012

Online Learning with Predictable Sequences

We present methods for online linear optimization that take advantage of...
06/05/2017

Learning Whenever Learning is Possible: Universal Learning under General Stochastic Processes

This work initiates a general study of learning and generalization witho...
09/18/2023

Asymptotically Efficient Online Learning for Censored Regression Models Under Non-I.I.D Data

The asymptotically efficient online learning problem is investigated for...
04/27/2011

Online Learning: Stochastic and Constrained Adversaries

Learning theory has largely focused on two main learning scenarios. The ...
11/28/2019

Adaptive Communication Bounds for Distributed Online Learning

We consider distributed online learning protocols that control the excha...

Please sign up or login with your details

Forgot password? Click here to reset