On improving learning capability of ELM and an application to brain-computer interface

07/14/2019
by   Apdullah Yayık, et al.
0

As a type of pseudoinverse learning, extreme learning machine (ELM) is able to achieve high performances in a rapid pace on benchmark datasets. However, when it is applied to real life large data, decline related to low-convergence of singular value decomposition (SVD) method occurs. Our study aims to resolve this issue via replacing SVD with theoretically and empirically much efficient 5 number of methods: lower upper triangularization, Hessenberg decomposition, Schur decomposition, modified Gram Schmidt algorithm and Householder reflection. Comparisons were made on electroencephalography based brain-computer interface classification problem to decide which method is the most useful. Results of subject-based classifications suggested that if priority was given to training pace, Hessenberg decomposition method, whereas if priority was given to performances Householder reflection method should be preferred.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro