On Graphical Models and Convex Geometry

06/27/2021
by   Haim Bar, et al.
0

We introduce a mixture-model of beta distributions to identify significant correlations among P predictors when P is large. The method relies on theorems in convex geometry, which we use to show how to control the error rate of edge detection in graphical models. Our `betaMix' method does not require any assumptions about the network structure, nor does it assume that the network is sparse. The results in this article hold for a wide class of data generating distributions that include light-tailed and heavy-tailed spherically symmetric distributions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro