On Fake Accuracy Verification

08/27/2020 ∙ by Hiroaki Nishikawa, et al. ∙ 0

In this paper, we reveal a mechanism behind a fake accuracy verification encountered with unstructured-grid schemes based on solution reconstruction such as UMUSCL. Third- (or higher-) order of accuracy has been reported for the Euler equations in the literature, but UMUSCL is actually second-order accurate at best for nonlinear equations. Fake high-order convergence occurs generally for a scheme that is high order for linear equations but second-order for nonlinear equations. It is caused by unexpected linearization of a target nonlinear equation due to too small of a perturbation added to an exact solution used for accuracy verification. To clarify the mechanism, we begin with a proof that the UMUSCL scheme is third-order accurate only for linear equations. Then, we derive a condition under which the third-order truncation error dominates the second-order error and demonstrate it numerically for Burgers' equation. Similar results are shown for the Euler equations, which disprove some accuracy verification results in the literature. To be genuinely third-order, UMUSCL must be implemented with flux reconstruction.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.