On estimators of the mean of infinite dimensional data in finite populations
The Horvitz-Thompson (HT), the Rao-Hartley-Cochran (RHC) and the generalized regression (GREG) estimators of the finite population mean are considered, when the observations are from an infinite dimensional space. We compare these estimators based on their asymptotic distributions under some commonly used sampling designs and some superpopulations satisfying linear regression models. We show that the GREG estimator is asymptotically at least as efficient as any of the other two estimators under different sampling designs considered in this paper. Further, we show that the use of some well known sampling designs utilizing auxiliary information may have an adverse effect on the performance of the GREG estimator, when the degree of heteroscedasticity present in linear regression models is not very large. On the other hand, the use of those sampling designs improves the performance of this estimator, when the degree of heteroscedasticity present in linear regression models is large. We develop methods for determining the degree of heteroscedasticity, which in turn determines the choice of appropriate sampling design to be used with the GREG estimator. We also investigate the consistency of the covariance operators of the above estimators. We carry out some numerical studies using real and synthetic data, and our theoretical results are supported by the results obtained from those numerical studies.
READ FULL TEXT