On Enhancing Ground Surface Detection from Sparse Lidar Point Cloud

05/25/2021 ∙ by Bo Li, et al. ∙ 0

Ground surface detection in point cloud is widely used as a key module in autonomous driving systems. Different from previous approaches which are mostly developed for lidars with high beam resolution, e.g. Velodyne HDL-64, this paper proposes ground detection techniques applicable to much sparser point cloud captured by lidars with low beam resolution, e.g. Velodyne VLP-16. The approach is based on the RANSAC scheme of plane fitting. Inlier verification for plane hypotheses is enhanced by exploiting the point-wise tangent, which is a local feature available to compute regardless of the density of lidar beams. Ground surface which is not perfectly planar is fitted by multiple (specifically 4 in our implementation) disjoint plane regions. By assuming these plane regions to be rectanglar and exploiting the integral image technique, our approach approximately finds the optimal region partition and plane hypotheses under the RANSAC scheme with real-time computational complexity.



There are no comments yet.


page 1

page 2

page 6

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.