On dropping the first Sobol' point

08/18/2020
by   Art B. Owen, et al.
0

Quasi-Monte Carlo (QMC) points are a substitute for plain Monte Carlo (MC) points that greatly improve integration accuracy under mild assumptions on the problem. Because QMC can give errors that are o(1/n) as n→∞, changing even one point can change the estimate by an amount much larger than the error would have been and worsen the convergence rate. As a result, certain practices that fit quite naturally and intuitively with MC points are very detrimental to QMC performance. These include thinning, burn-in, and taking sample sizes such as powers of 10, other than the ones for which the QMC points were designed. This article looks at the effects of a common practice in which one skips the first point of a Sobol' sequence. The retained points ordinarily fail to be a digital net and when scrambling is applied, skipping over the first point can increase the numerical error by a factor proportional to √(n) where n is the number of function evaluations used.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro