On Deep Learning-based Massive MIMO Indoor User Localization

04/13/2018
by   Maximilian Arnold, et al.
0

We examine the usability of deep neural networks for multiple-input multiple-output (MIMO) user positioning solely based on the orthogonal frequency division multiplex (OFDM) complex channel coefficients. In contrast to other indoor positioning systems (IPSs), the proposed method does not require any additional piloting overhead or any other changes in the communications system itself as it is deployed on top of an existing OFDM MIMO system. Supported by actual measurements, we are mainly interested in the more challenging non-line of sight (NLoS) scenario. However, gradient descent optimization is known to require a large amount of data-points for training, i.e., the required database would be too large when compared to conventional methods. Thus, we propose a twostep training procedure, with training on simulated line of sight (LoS) data in the first step, and finetuning on measured NLoS positions in the second step. This turns out to reduce the required measured training positions and thus, reduces the effort for data acquisition.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset