## References

- [1] Aigner M. (1979) Combinatorial theory. Springer-Verlag, Berlin.
- [2] Fridman G. Š. (1971) Diametrically-critical graphs of infinite diameter. In: On some questions of theoretical cybernetics and programming algorithms, G.P.Bagrinovski and A.A.Ljapunov, eds. Inst. of Hydrodinamics SO AN SSSR, Novosibirsk, 36-43 (in Russian).
- [3] Fridman G. Š. (1973) On radius critical directed graphs. Dokl. Akad. Nauk SSSR 212, No. 3, 565-568 (in Russian); Engl. transl. Soviet Math. Dokl. 14, No. 5, 1435-1439.
- [4] Fridman G. Š. (1977) Maximal directed graphs of finite quasi-diameter. In: Abstracts of the third accounting scientific-methodical conference. Omsk State University, Omsk, 98-99 (in Russian).
- [5] Gliviak F. (1975) On radially critical graphs. In Recent Advances in Graph Theory. Proc. Sympos. Prague 1974. Academica, Prague, 207-221.
- [6] Gliviak F., Knor M., Šoltés L. (1994) On radially maximal graphs. Australasian J. of Comb. 9, 275-284.
- [7] Gliviak F., Knor M. (1995) On radially extremal digraphs. Mathematica Bohemica. 120, No. 1, 41-55.
- [8] Ismailov Š. M. (1970) On the connection of the radius of a digraph with the number of its paths. Upravl. sistemy. Nauka, Novosibirsk, No. 4-5, 35-38 (in Russian).
- [9] Ismailov Š. M. (1971) The number of arcs of a digraph of a given radius with a given number of vertices and strong components. Dokl. Akad. Nauk Azerbaidžan SSR 27, No. 2, 8-12 (in Russian).
- [10] Ismailov Š. M. (1973) An upper bound for the number of arcs of a nonbiconnected digraph with a given number of bicomponents and radius. VINITI manuscript, No. 3245-71 Dep. (in Russian).
- [11] Mel’nikov L. S. (1970) Critical digraphs with given diameter. Upravl. sistemy. Nauka, Novosibirsk, No. 7, 37-45 (in Russian).
- [12] Ore O. (1968) Diameters in graphs. J. combin theory 5, 75-81.
- [13] Vizing V. G. (1967) On the number of edges in a graph with given radius. Dokl. Akad. Nauk SSSR 173, 1245-1246 (in Russian); Engl. transl. Soviet Math. Dokl. 8, 535-536.
- [14] Zykov A. A. (1969) Theory of finite graphs. I. Nauka, Novosibirsk (in Russian).

Comments

There are no comments yet.