On Coarse Graining of Information and Its Application to Pattern Recognition

11/12/2014
by   Ali Ghaderi, et al.
0

We propose a method based on finite mixture models for classifying a set of observations into number of different categories. In order to demonstrate the method, we show how the component densities for the mixture model can be derived by using the maximum entropy method in conjunction with conservation of Pythagorean means. Several examples of distributions belonging to the Pythagorean family are derived. A discussion on estimation of model parameters and the number of categories is also given.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro