On clique numbers of colored mixed graphs

04/15/2021
by   Dipayan Chakraborty, et al.
0

An (m,n)-colored mixed graph, or simply, an (m,n)-graph is a graph having m different types of arcs and n different types of edges. A homomorphism of an (m,n)-graph G to another (m,n)-graph H is a vertex mapping that preserves adjacency, the type thereto and the direction. A subset R of the set of vertices of G that always maps distinct vertices in itself to distinct image vertices under any homomorphism is called an (m,n)-relative clique of G. The maximum cardinality of an (m,n)-relative clique of a graph is called the (m,n)-relative clique number of the graph. In this article, we explore the (m,n)-relative clique numbers for various families of graphs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset