References
- [1] Ben-Akiva, M. (1973). The structure of travel demand models. PhD thesis, MIT.
- [2] Ben-Akiva, M., and Lerman, S. (1985). Discrete Choice Analysis: Theory and Application to Travel Demand. MIT Press.
- [3] Bochner, S. (1937). “Completely monotone functions of the Laplace operator for torus and sphere.” Duke Math. J. vol. 3, pp. 488-502.
- [4] Dishon, M. and Bendler, J. (1990). “Tables of the inverse Laplace transform of the function $ e^{-s^beta} $.” Journal of Research of the National Institute of Standards and Technology 95, pp. 433–467.
-
[5]
Feller, W. (1971).
An Introduction to Probability Theory and its Applications
vol. 2, 2nd edition. Wiley. - [6] Humbert, P. (1945). “Nouvelles correspondances symboliques”. Bulletin de la Société Mathématique de France 69, pp. 121–129.
- [7] McFadden, D. (1978). “Modeling the choice of residential location”. In A. Karlquist et. al., editor, Spatial Interaction Theory and Residential Location. North Holland.
- [8] Pollard, H. (1946). “The representation of $ e^{-x^lambda} $ as a Laplace integral”. Bulletin of the American Mathematical Society 52(10), pp. 908–910.
- [9] Ridout, M. S. (2009). “Generating random numbers from a distribution specified by its Laplace transform”. Statistics and Computing 19, pp 439–450.
- [10] Tiago de Oliveira, J. (1958). “Extremal Distributions”. Revista de Faculdada du Ciencia, Lisboa, Serie A, Vol. 7, pp. 215–227.
- [11] Tiago de Oliveira, J. (1997). Statistical analysis of the extreme. Pendor.