On a Calderón preconditioner for the symmetric formulation of the electroencephalography forward problem without barycentric refinements
We present a Calderón preconditioning scheme for the symmetric formulation of the forward electroencephalographic (EEG) problem that cures both the dense discretization and the high-contrast breakdown. Unlike existing Calderón schemes presented for the EEG problem, it is refinement-free, that is, the electrostatic integral operators are not discretized with basis functions defined on the barycentrically-refined dual mesh. In fact, in the preconditioner, we reuse the original system matrix thus reducing computational burden. Moreover, the proposed formulation gives rise to a symmetric, positive-definite system of linear equations, which allows the application of the conjugate gradient method, an iterative method that exhibits a smaller computational cost compared to other Krylov subspace methods applicable to non-symmetric problems. Numerical results corroborate the theoretical analysis and attest of the efficacy of the proposed preconditioning technique on both canonical and realistic scenarios.
READ FULL TEXT