Omega: An Architecture for AI Unification

05/16/2018
by   Eray Özkural, et al.
0

We introduce the open-ended, modular, self-improving Omega AI unification architecture which is a refinement of Solomonoff's Alpha architecture, as considered from first principles. The architecture embodies several crucial principles of general intelligence including diversity of representations, diversity of data types, integrated memory, modularity, and higher-order cognition. We retain the basic design of a fundamental algorithmic substrate called an "AI kernel" for problem solving and basic cognitive functions like memory, and a larger, modular architecture that re-uses the kernel in many ways. Omega includes eight representation languages and six classes of neural networks, which are briefly introduced. The architecture is intended to initially address data science automation, hence it includes many problem solving methods for statistical tasks. We review the broad software architecture, higher-order cognition, self-improvement, modular neural architectures, intelligent agents, the process and memory hierarchy, hardware abstraction, peer-to-peer computing, and data abstraction facility.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset