Offloading Deadline-Constrained Cellular Traffic
In this work we study the problem of hard-deadline constrained data offloading in cellular networks. A single-Base-Station (BS) single-frequency-channel downlink system is studied where users request the same packet from the BS at the beginning of each time slot. Packets have a hard deadline of one time slot. The slot is divided into two phases. Out of those users having high channel gain allowing them to decode the packet in the first phase, one is chosen to rebroadcast it to the remaining users in the second phase. This gives the remaining users a second opportunity to potentially decode this packet before the deadline passes. By this, the BS has offloaded the packet to a `local network of users' which eliminates unnecessary BS retransmissions. The problem is modeled as a rate-adaptation and scheduling optimization problem to maximize the duration of this second phase such that each user receives a certain percentage of the packets. We show that the proposed algorithm has a polynomial complexity in the number of users with optimal performance.
READ FULL TEXT