Offensive Alliances in Graphs

08/05/2022
by   Ajinkya Gaikwad, et al.
0

A set S⊆ V of vertices is an offensive alliance in an undirected graph G=(V,E) if each v∈ N(S) has at least as many neighbours in S as it has neighbours (including itself) not in S. We study the classical and parameterized complexity of the Offensive Alliance problem, where the aim is to find a minimum size offensive alliance. Our focus here lies on natural parameter as well as parameters that measure the structural properties of the input instance. We enhance our understanding of the problem from the viewpoint of parameterized complexity by showing that (1) the problem is W[1]-hard parameterized by a wide range of fairly restrictive structural parameters such as the feedback vertex set number, treewidth, pathwidth, and treedepth of the input graph; we thereby resolve an open question stated by Bernhard Bliem and Stefan Woltran (2018) concerning the complexity of Offensive Alliance parameterized by treewidth, (2) unless ETH fails, Offensive Alliance problem cannot be solved in time 𝒪^*(2^o(k log k)) where k is the solution size, (3) Offensive Alliance problem does not admit a polynomial kernel parameterized by solution size and vertex cover of the input graph. On the positive side we prove that (4) Offensive Alliance can be solved in time 𝒪^*(vc(G)^𝒪(vc(G))) where vc(G) is the vertex cover number of the input graph. In terms of classical complexity, we prove that (5) Offensive Alliance problem cannot be solved in time 2^o(n) even when restricted to bipartite graphs, unless ETH fails, (6) Offensive Alliance problem cannot be solved in time 2^o(√(n)) even when restricted to apex graphs, unless ETH fails. We also prove that (7) Offensive Alliance problem is NP-complete even when restricted to bipartite, chordal, split and circle graphs.

READ FULL TEXT

page 1

page 2

page 3

page 4

research
11/11/2021

The Harmless Set Problem

Given a graph G = (V,E), a threshold function t  :  V →ℕ and an integer ...
research
10/29/2021

On Structural Parameterizations of the Offensive Alliance Problem

The Offensive Alliance problem has been studied extensively during the l...
research
06/19/2019

Fine-grained complexity of graph homomorphism problem for bounded-treewidth graphs

For graphs G and H, a homomorphism from G to H is an edge-preserving map...
research
09/24/2020

Fine-grained complexity of the list homomorphism problem: feedback vertex set and cutwidth

For graphs G,H, a homomorphism from G to H is an edge-preserving mapping...
research
07/19/2021

Perfectly Matched Sets in Graphs: Hardness, Kernelization Lower Bound, and FPT and Exact Algorithms

In an undirected graph G=(V,E), we say (A,B) is a pair of perfectly matc...
research
10/09/2018

On the Distance Identifying Set meta-problem and applications to the complexity of identifying problems on graphs

Numerous problems consisting in identifying vertices in graphs using dis...
research
07/28/2020

The Satisfactory Partition Problem

The Satisfactory Partition problem consists in deciding if the set of ve...

Please sign up or login with your details

Forgot password? Click here to reset