Off-Policy Risk Assessment in Contextual Bandits

04/18/2021
by   Audrey Huang, et al.
0

To evaluate prospective contextual bandit policies when experimentation is not possible, practitioners often rely on off-policy evaluation, using data collected under a behavioral policy. While off-policy evaluation studies typically focus on the expected return, practitioners often care about other functionals of the reward distribution (e.g., to express aversion to risk). In this paper, we first introduce the class of Lipschitz risk functionals, which subsumes many common functionals, including variance, mean-variance, and conditional value-at-risk (CVaR). For Lipschitz risk functionals, the error in off-policy risk estimation is bounded by the error in off-policy estimation of the cumulative distribution function (CDF) of rewards. Second, we propose Off-Policy Risk Assessment (OPRA), an algorithm that (i) estimates the target policy's CDF of rewards; and (ii) generates a plug-in estimate of the risk. Given a collection of Lipschitz risk functionals, OPRA provides estimates for each with corresponding error bounds that hold simultaneously. We analyze both importance sampling and variance-reduced doubly robust estimators of the CDF. Our primary theoretical contributions are (i) the first concentration inequalities for both types of CDF estimators and (ii) guarantees on our Lipschitz risk functional estimates, which converge at a rate of O(1/√(n)). For practitioners, OPRA offers a practical solution for providing high-confidence assessments of policies using a collection of relevant metrics.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset