OFEI: A Semi-black-box Android Adversarial Sample Attack Framework Against DLaaS

05/25/2021
by   Guangquan Xu, et al.
10

With the growing popularity of Android devices, Android malware is seriously threatening the safety of users. Although such threats can be detected by deep learning as a service (DLaaS), deep neural networks as the weakest part of DLaaS are often deceived by the adversarial samples elaborated by attackers. In this paper, we propose a new semi-black-box attack framework called one-feature-each-iteration (OFEI) to craft Android adversarial samples. This framework modifies as few features as possible and requires less classifier information to fool the classifier. We conduct a controlled experiment to evaluate our OFEI framework by comparing it with the benchmark methods JSMF, GenAttack and pointwise attack. The experimental results show that our OFEI has a higher misclassification rate of 98.25 traditional white-box attack methods in the image field, such as fast gradient sign method (FGSM) and DeepFool, to craft adversarial samples for Android. Finally, to enhance the security of DLaaS, we use two uncertainties of the Bayesian neural network to construct the combined uncertainty, which is used to detect adversarial samples and achieves a high detection rate of 99.28

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset