ODIN: Overcoming Dynamic Interference in iNference pipelines

06/02/2023
by   Pirah Noor Soomro, et al.
0

As an increasing number of businesses becomes powered by machine-learning, inference becomes a core operation, with a growing trend to be offered as a service. In this context, the inference task must meet certain service-level objectives (SLOs), such as high throughput and low latency. However, these targets can be compromised by interference caused by long- or short-lived co-located tasks. Prior works focus on the generic problem of co-scheduling to mitigate the effect of interference on the performance-critical task. In this work, we focus on inference pipelines and propose ODIN, a technique to mitigate the effect of interference on the performance of the inference task, based on the online scheduling of the pipeline stages. Our technique detects interference online and automatically re-balances the pipeline stages to mitigate the performance degradation of the inference task. We demonstrate that ODIN successfully mitigates the effect of interference, sustaining the latency and throughput of CNN inference, and outperforms the least-loaded scheduling (LLS), a common technique for interference mitigation. Additionally, it is effective in maintaining service-level objectives for inference, and it is scalable to large network models executing on multiple processing elements.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset