Occlusion Handling in Generic Object Detection: A Review

01/21/2021
by   Kaziwa Saleh, et al.
0

The significant power of deep learning networks has led to enormous development in object detection. Over the last few years, object detector frameworks have achieved tremendous success in both accuracy and efficiency. However, their ability is far from that of human beings due to several factors, occlusion being one of them. Since occlusion can happen in various locations, scale, and ratio, it is very difficult to handle. In this paper, we address the challenges in occlusion handling in generic object detection in both outdoor and indoor scenes, then we refer to the recent works that have been carried out to overcome these challenges. Finally, we discuss some possible future directions of research.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro