Occlusion Fields: An Implicit Representation for Non-Line-of-Sight Surface Reconstruction

03/16/2022
by   Javier Grau, et al.
0

Non-line-of-sight reconstruction (NLoS) is a novel indirect imaging modality that aims to recover objects or scene parts outside the field of view from measurements of light that is indirectly scattered off a directly visible, diffuse wall. Despite recent advances in acquisition and reconstruction techniques, the well-posedness of the problem at large, and the recoverability of objects and their shapes in particular, remains an open question. The commonly employed Fermat path criterion is rather conservative with this regard, as it classifies some surfaces as unrecoverable, although they contribute to the signal. In this paper, we use a simpler necessary criterion for an opaque surface patch to be recoverable. Such piece of surface must be directly visible from some point on the wall, and it must occlude the space behind itself. Inspired by recent advances in neural implicit representations, we devise a new representation and reconstruction technique for NLoS scenes that unifies the treatment of recoverability with the reconstruction itself. Our approach, which we validate on various synthetic and experimental datasets, exhibits interesting properties. Unlike memory-inefficient volumetric representations, ours allows to infer adaptively tessellated surfaces from time-of-flight measurements of moderate resolution. It can further recover features beyond the Fermat path criterion, and it is robust to significant amounts of self-occlusion. We believe that this is the first time that these properties have been achieved in one system that, as an additional benefit, is trainable and hence suited for data-driven approaches.

READ FULL TEXT

page 3

page 8

page 11

page 12

page 13

page 14

page 20

page 21

research
03/22/2023

NLOS-NeuS: Non-line-of-sight Neural Implicit Surface

Non-line-of-sight (NLOS) imaging is conducted to infer invisible scenes ...
research
02/10/2018

Revealing hidden scenes by photon-efficient occlusion-based opportunistic active imaging

The ability to see around corners, i.e., recover details of a hidden sce...
research
11/25/2022

Neural Poisson: Indicator Functions for Neural Fields

Implicit neural field generating signed distance field representations (...
research
03/08/2022

NeReF: Neural Refractive Field for Fluid Surface Reconstruction and Implicit Representation

Existing neural reconstruction schemes such as Neural Radiance Field (Ne...
research
09/16/2021

Towards Non-Line-of-Sight Photography

Non-line-of-sight (NLOS) imaging is based on capturing the multi-bounce ...
research
10/12/2019

Recent Advances in Imaging Around Corners

Seeing around corners, also known as non-line-of-sight (NLOS) imaging is...
research
11/02/2019

Learning to Infer Implicit Surfaces without 3D Supervision

Recent advances in 3D deep learning have shown that it is possible to tr...

Please sign up or login with your details

Forgot password? Click here to reset