Occam Factor for Gaussian Models With Unknown Variance Structure

05/04/2021 ∙ by Zachary M. Pisano, et al. ∙ 0

We discuss model selection to determine whether the variance-covariance matrix of a multivariate Gaussian model with known mean should be considered to be a constant diagonal, a non-constant diagonal, or an arbitrary positive definite matrix. Of particular interest is the relationship between Bayesian evidence and the flexibility penalty due to Priebe and Rougier. For the case of an exponential family in canonical form equipped with a conjugate prior for the canonical parameter, flexibility may be exactly decomposed into the usual BIC likelihood penalty and a O_p(1) term, the latter of which we explicitly compute. We also investigate the asymptotics of Bayes factors for linearly nested canonical exponential families equipped with conjugate priors; in particular, we find the exact rates at which Bayes factors correctly diverge in favor of the correct model: linearly and logarithmically in the number of observations when the full and nested models are true, respectively. Such theoretical considerations for the general case permit us to fully express the asymptotic behavior of flexibility and Bayes factors for the variance-covariance structure selection problem when we assume that the prior for the model precision is a member of the gamma/Wishart family of distributions or is uninformative. Simulations demonstrate evidence's immediate and superior performance in model selection compared to approximate criteria such as the BIC. We extend the framework to the multivariate Gaussian linear model with three data-driven examples.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.