Obtaining Better Static Word Embeddings Using Contextual Embedding Models

06/08/2021
by   Prakhar Gupta, et al.
11

The advent of contextual word embeddings – representations of words which incorporate semantic and syntactic information from their context – has led to tremendous improvements on a wide variety of NLP tasks. However, recent contextual models have prohibitively high computational cost in many use-cases and are often hard to interpret. In this work, we demonstrate that our proposed distillation method, which is a simple extension of CBOW-based training, allows to significantly improve computational efficiency of NLP applications, while outperforming the quality of existing static embeddings trained from scratch as well as those distilled from previously proposed methods. As a side-effect, our approach also allows a fair comparison of both contextual and static embeddings via standard lexical evaluation tasks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset