Object Manipulation Learning by Imitation

03/03/2016
by   Zhen Zeng, et al.
0

We aim to enable robot to learn object manipulation by imitation. Given external observations of demonstrations on object manipulations, we believe that two underlying problems to address in learning by imitation is 1) segment a given demonstration into skills that can be individually learned and reused, and 2) formulate the correct RL (Reinforcement Learning) problem that only considers the relevant aspects of each skill so that the policy for each skill can be effectively learned. Previous works made certain progress in this direction, but none has taken private information into account. The public information is the information that is available in the external observations of demonstration, and the private information is the information that are only available to the agent that executes the actions, such as tactile sensations. Our contribution is that we provide a method for the robot to automatically segment the demonstration of object manipulations into multiple skills, and formulate the correct RL problem for each skill, and automatically decide whether the private information is an important aspect of each skill based on interaction with the world. Our experiment shows that our robot learns to pick up a block, and stack it onto another block by imitating an observed demonstration. The evaluation is based on 1) whether the demonstration is reasonably segmented, 2) whether the correct RL problems are formulated, 3) and whether a good policy is learned.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset