Object Allocation Over a Network of Objects: Mobile Agents with Strict Preferences

03/02/2021 ∙ by Fu Li, et al. ∙ 0

In recent work, Gourvès, Lesca, and Wilczynski propose a variant of the classic housing markets model where the matching between agents and objects evolves through Pareto-improving swaps between pairs of adjacent agents in a social network. To explore the swap dynamics of their model, they pose several basic questions concerning the set of reachable matchings. In their work and other follow-up works, these questions have been studied for various classes of graphs: stars, paths, generalized stars (i.e., trees where at most one vertex has degree greater than two), trees, and cliques. For generalized stars and trees, it remains open whether a Pareto-efficient reachable matching can be found in polynomial time. In this paper, we pursue the same set of questions under a natural variant of their model. In our model, the social network is replaced by a network of objects, and a swap is allowed to take place between two agents if it is Pareto-improving and the associated objects are adjacent in the network. In those cases where the question of polynomial-time solvability versus NP-hardness has been resolved for the social network model, we are able to show that the same result holds for the network-of-objects model. In addition, for our model, we present a polynomial-time algorithm for computing a Pareto-efficient reachable matching in generalized star networks. Moreover, the object reachability algorithm that we present for path networks is significantly faster than the known polynomial-time algorithms for the same question in the social network model.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.