NUMSnet: Nested-U Multi-class Segmentation network for 3D Medical Image Stacks

04/05/2023
by   Sohini Roychowdhury, et al.
0

Semantic segmentation for medical 3D image stacks enables accurate volumetric reconstructions, computer-aided diagnostics and follow up treatment planning. In this work, we present a novel variant of the Unet model called the NUMSnet that transmits pixel neighborhood features across scans through nested layers to achieve accurate multi-class semantic segmentations with minimal training data. We analyze the semantic segmentation performance of the NUMSnet model in comparison with several Unet model variants to segment 3-7 regions of interest using only 10 stacks. The proposed NUMSnet model achieves up to 20 segmentation recall with 4-9 2.5-10 Unet++ model. The NUMSnet model needs to be trained by ordered images around the central scan of each volumetric stack. Propagation of image feature information from the 6 nested layers of the Unet++ model are found to have better computation and segmentation performances than propagation of all up-sampling layers in a Unet++ model. The NUMSnet model achieves comparable segmentation performances to existing works, while being trained on as low as 5% of the training images. Also, transfer learning allows faster convergence of the NUMSnet model for multi-class semantic segmentation from pathology in Lung-CT images to cardiac segmentations in Heart-CT stacks. Thus, the proposed model can standardize multi-class semantic segmentation on a variety of volumetric image stacks with minimal training dataset. This can significantly reduce the cost, time and inter-observer variabilities associated with computer-aided detections and treatment.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro