numpywren: serverless linear algebra

10/23/2018
by   Vaishaal Shankar, et al.
0

Linear algebra operations are widely used in scientific computing and machine learning applications. However, it is challenging for scientists and data analysts to run linear algebra at scales beyond a single machine. Traditional approaches either require access to supercomputing clusters, or impose configuration and cluster management challenges. In this paper we show how the disaggregation of storage and compute resources in so-called "serverless" environments, combined with compute-intensive workload characteristics, can be exploited to achieve elastic scalability and ease of management. We present numpywren, a system for linear algebra built on a serverless architecture. We also introduce LAmbdaPACK, a domain-specific language designed to implement highly parallel linear algebra algorithms in a serverless setting. We show that, for certain linear algebra algorithms such as matrix multiply, singular value decomposition, and Cholesky decomposition, numpywren's performance (completion time) is within 33 efficiency (total CPU-hours) is up to 240 providing an easier to use interface and better fault tolerance. At the same time, we show that the inability of serverless runtimes to exploit locality across the cores in a machine fundamentally limits their network efficiency, which limits performance on other algorithms such as QR factorization. This highlights how cloud providers could better support these types of computations through small changes in their infrastructure.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset