Numerical Stability of Tangents and Adjoints of Implicit Functions

06/16/2021 ∙ by Uwe Naumann, et al. ∙ 0

We investigate errors in tangents and adjoints of implicit functions resulting from errors in the primal solution due to approximations computed by a numerical solver. Adjoints of systems of linear equations turn out to be unconditionally numerically stable. Tangents of systems of linear equations can become instable as well as both tangents and adjoints of systems of nonlinear equations, which extends to optima of convex unconstrained objectives. Sufficient conditions for numerical stability are derived.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.