Numerical Solution of Compressible Euler and Magnetohydrodynamic flow past an infinite cone

10/20/2019
by   Ian Holloway, et al.
0

A numerical scheme is developed for systems of conservation laws on manifolds which arise in high speed aerodynamics and magneto-aerodynamics. The systems are presented in an arbitrary coordinate system on the manifold and involve source terms which account for the curvature of the domain. In order for a numerical method to accurately capture the behavior of the system it is solving, the equations must be discretized in a way that is not only consistent in value, but also models the appropriate character of the system. Such a discretization is presented in this work which preserves the tensorial transformation relationships involved in formulating equations in a curved space. A numerical method is then developed and applied to the conical Euler and Ideal Magnetohydrodynamic equations. To the author's knowledge, this is the first demonstration of a numerical solver for the conical Ideal MHD equations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro