Numerical model for 32-bit magnonic ripple carry adder

09/27/2021
by   U. Garlando, et al.
0

In CMOS-based electronics, the most straightforward way to implement a summation operation is to use the ripple carry adder (RCA). Magnonics, the field of science concerned with data processing by spin-waves and their quanta magnons, recently proposed a magnonic half-adder that can be considered as the simplest magnonic integrated circuit. Here, we develop a computation model for the magnonic basic blocks to enable the design and simulation of magnonic gates and magnonic circuits of arbitrary complexity and demonstrate its functionality on the example of a 32-bit integrated RCA. It is shown that the RCA requires the utilization of additional regenerators based on magnonic directional couplers with embedded amplifiers to normalize the magnon signals in-between the half-adders. The benchmarking of large-scale magnonic integrated circuits is performed. The energy consumption of 30 nm-based magnonic 32-bit adder can be as low as 961aJ per operation with taking into account all required amplifiers.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset