Numerical evaluation of singular integrals on non-disjoint self-similar fractal sets

03/23/2023
by   Andrew Gibbs, et al.
0

We consider the numerical evaluation of a class of double integrals with respect to a pair of self-similar measures over a self-similar fractal set, with a weakly singular integrand of logarithmic or algebraic type. In a recent paper [Gibbs, Hewett and Moiola, Numer. Alg., 2023] it was shown that when the fractal set is “disjoint” in a certain sense (an example being the Cantor set), the self-similarity of the measures, combined with the homogeneity properties of the integrand, can be exploited to express the singular integral exactly in terms of regular integrals, which can be readily approximated numerically. In this paper we present a methodology for extending these results to cases where the fractal is non-disjoint. Our approach applies to many well-known examples including the Sierpinski triangle, the Vicsek fractal, the Sierpinski carpet, and the Koch snowflake.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset