Numerical analysis of optimal control problems governed by fourth-order linear elliptic equations using the Hessian discretisation method

12/13/2022
by   Devika Shylaja, et al.
0

This paper focusses on the optimal control problems governed by fourth-order linear elliptic equations with clamped boundary conditions in the framework of the Hessian discretisation method (HDM). The HDM is an abstract framework that enables the convergence analysis of numerical methods through a quadruplet known as a Hessian discretisation (HD) and three core properties of HD. The HDM covers several numerical schemes such as the conforming finite element methods, the Adini and Morley non-conforming finite element methods (ncFEMs), method based on gradient recovery (GR) operators and the finite volume methods (FVMs). Basic error estimates and superconvergence results are established for the state, adjoint and control variables in the HDM framework. The article concludes with numerical results that illustrates the theoretical convergence rates for the GR method, Adini ncFEM and FVM.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset