Nowcasting COVID-19 incidence indicators during the Italian first outbreak

10/23/2020 ∙ by Pierfrancesco Alaimo Di Loro, et al. ∙ 0

A novel parametric regression model is proposed to fit incidence data typically collected during epidemics. The proposal is motivated by real-time monitoring and short-term forecasting of the main epidemiological indicators within the first outbreak of COVID-19 in Italy. Accurate short-term predictions, including the potential effect of exogenous or external variables are provided; this ensures to accurately predict important characteristics of the epidemic (e.g., peak time and height), allowing for a better allocation of health resources over time. Parameters estimation is carried out in a maximum likelihood framework. All computational details required to reproduce the approach and replicate the results are provided.



There are no comments yet.


page 11

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.