References
- [1] Moez A. AbdelGawad. NOOP: A Mathematical Model of Object-Oriented Programming. PhD thesis, Rice University, 2012.
- [2] Moez A. AbdelGawad. NOOP: A Nominal Mathematical Model Of Object-Oriented Programming. Scholar’s Press, 2013.
- [3] Moez A. AbdelGawad. An overview of nominal-typing versus structural-typing in object-oriented programming (with code examples). Technical report, arXiv.org:1309.2348 [cs.PL], 2013.
- [4] Moez A. AbdelGawad. A domain-theoretic model of nominally-typed object-oriented programming. Electronic Notes in Theoretical Computer Science (ENTCS), 301:3–19, 2014.
- [5] Moez A. AbdelGawad. Domain theory for modeling OOP: A summary. Technical report, arXiv.org:1406.7497 [cs.PL], 2014.
- [6] Moez A. AbdelGawad. A comparison of NOOP to structural domain-theoretic models of object-oriented programming. Preprint available at http://arXiv.org/abs/1603.08648, 2016.
- [7] Moez A. AbdelGawad. Towards an accurate mathematical model of generic nominally-typed OOP (extended abstract). arXiv:1610.05114 [cs.PL], 2016.
- [8] Moez A. AbdelGawad. Towards understanding generics. Technical report, arXiv:1605.01480 [cs.PL], 2016.
- [9] Moez A. AbdelGawad. Why nominal-typing matters in OOP. Preprint available at http://arxiv.org/abs/1606.03809, 2016.
- [10] Moez A. AbdelGawad. Towards a Java subtyping operad. Proceedings of FTfJP’17, Barcelona, Spain, June 18-23, 2017, 2017.
- [11] Moez A. AbdelGawad. Towards a Java subtyping operad (extended version). Preprint available at http://arxiv.org/abs/1706.00274, 2017.
- [12] Moez A. AbdelGawad and Robert Cartwright. In nominally-typed OOP, objects are not mere records and inheritance Is subtyping. Submitted for journal publication, 2016.
- [13] Peter S. Canning, William R. Cook, Walter L. Hill, J. Mitchell, and W. Olthoff. F-bounded polymorphism for object-oriented programming. In Proc. of Conf. on Functional Programming Languages and Computer Architecture, 1989.
- [14] Robert Cartwright and Moez A. AbdelGawad. Inheritance Is subtyping (extended abstract). In The 25^{th} Nordic Workshop on Programming Theory (NWPT), Tallinn, Estonia, 2013.
- [15] Robert Cartwright, Rebecca Parsons, and Moez A. AbdelGawad. Domain Theory: An Introduction. Preprint available at http://arxiv.org/abs/1605.05858, 2016.
- [16] William R. Cook, Walter L. Hill, and Peter S. Canning. Inheritance is not subtyping. In POPL’90 Proceedings, 1990.
- [17] C. A. Gunter and Dana S. Scott. Handbook of Theoretical Computer Science, volume B, chapter 12 (Semantic Domains). 1990.
- [18] Bart Jacobs. Objects and classes, coalgebraically. In Object-Orientation with Parallelism and Persistence, pages 83–103. Kluwer Acad. Publ, 1996.
- [19] T. Leinster. Higher Operads, Higher Categories. London Mathematical Society Lecture Note Series. Cambridge University Press, 2004.
- [20] Benjamin C. Pierce. Basic Category Theory for Computer Scientists. MIT Press, 1991.
- [21] Erik Poll. A coalgebraic semantics of subtyping. Electronic Notes in Theoretical Computer Science, 33:276 – 293, 2000. CMCS’2000, Coalgebraic Methods in Computer Science.
- [22] Dana S. Scott. Domains for denotational semantics. Technical report, Computer Science Department, Carnegie Mellon University, 1983.
- [23] M. B. Smyth and Gordon D. Plotkin. The category-theoretic solution of recursive domain equations. SIAM J. of Computing, 11:761–783, 1982.
- [24] David Spivak. Functorial data migration. Information and Computation, 217:31–51, August 2012.
- [25] David Spivak. Category theory for the sciences. MIT Press, 2014.
- [26] David Spivak. Private communication. 2017.
Comments
There are no comments yet.