Novel structure-preserving schemes for stochastic Klein–Gordon–Schrödinger equations with additive noise
Stochastic Klein–Gordon–Schrödinger (KGS) equations are important mathematical models and describe the interaction between scalar nucleons and neutral scalar mesons in the stochastic environment. In this paper, we propose novel structure-preserving schemes to numerically solve stochastic KGS equations with additive noise, which preserve averaged charge evolution law, averaged energy evolution law, symplecticity, and multi-symplecticity. By applying central difference, sine pseudo-spectral method, or finite element method in space and modifying finite difference in time, we present some charge and energy preserved fully-discrete scheme for the original system. In addition, combining the symplectic Runge-Kutta method in time and finite difference in space, we propose a class of multi-symplectic discretizations preserving the geometric structure of the stochastic KGS equation. Finally, numerical experiments confirm theoretical findings.
READ FULL TEXT