Not one but many Tradeoffs: Privacy Vs. Utility in Differentially Private Machine Learning

08/20/2020
by   Benjamin Zi Hao Zhao, et al.
0

Data holders are increasingly seeking to protect their user's privacy, whilst still maximizing their ability to produce machine models with high quality predictions. In this work, we empirically evaluate various implementations of differential privacy (DP), and measure their ability to fend off real-world privacy attacks, in addition to measuring their core goal of providing accurate classifications. We establish an evaluation framework to ensure each of these implementations are fairly evaluated. Our selection of DP implementations add DP noise at different positions within the framework, either at the point of data collection/release, during updates while training of the model, or after training by perturbing learned model parameters. We evaluate each implementation across a range of privacy budgets, and datasets, each implementation providing the same mathematical privacy guarantees. By measuring the models' resistance to real world attacks of membership and attribute inference, and their classification accuracy. we determine which implementations provide the most desirable tradeoff between privacy and utility. We found that the number of classes of a given dataset is unlikely to influence where the privacy and utility tradeoff occurs. Additionally, in the scenario that high privacy constraints are required, perturbing input training data does not trade off as much utility, as compared to noise added later in the ML process.

READ FULL TEXT
research
07/06/2021

DTGAN: Differential Private Training for Tabular GANs

Tabular generative adversarial networks (TGAN) have recently emerged to ...
research
02/07/2022

Learning under Storage and Privacy Constraints

Storage-efficient privacy-guaranteed learning is crucial due to enormous...
research
04/03/2022

A Differentially Private Framework for Deep Learning with Convexified Loss Functions

Differential privacy (DP) has been applied in deep learning for preservi...
research
11/28/2022

On the Utility Recovery Incapability of Neural Net-based Differential Private Tabular Training Data Synthesizer under Privacy Deregulation

Devising procedures for auditing generative model privacy-utility tradeo...
research
06/19/2019

Adversarial Task-Specific Privacy Preservation under Attribute Attack

With the prevalence of machine learning services, crowdsourced data cont...
research
01/13/2022

Privacy-Utility Trades in Crowdsourced Signal Map Obfuscation

Cellular providers and data aggregating companies crowdsource celluar si...
research
05/11/2023

The Privacy-Utility Tradeoff in Rank-Preserving Dataset Obfuscation

Dataset obfuscation refers to techniques in which random noise is added ...

Please sign up or login with your details

Forgot password? Click here to reset