References
-
(1)
D. J. Rezende, S. Mohamed, and D. Wierstra.
Stochastic backpropagation and approximate inference in deep generative models.
In ICML, 2014. - (2) D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In ICLR, 2014.
-
(3)
Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan
Wierstra.
Draw: A recurrent neural network for image generation.
In ICML, 2015. - (4) SM Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, Koray Kavukcuoglu, and Geoffrey E Hinton. Attend, infer, repeat: Fast scene understanding with generative models. arXiv preprint arXiv:1603.08575, 2016.
- (5) Danilo Jimenez Rezende, Shakir Mohamed, Ivo Danihelka, Karol Gregor, and Daan Wierstra. One-shot generalization in deep generative models. In ICML, 2016.
-
(6)
Matthew D. Hoffman, David M. Blei, Chong Wang, and John Paisley.
Stochastic variational inference.
Journal of Machine Learning Research
, 14:1303–1347, 2013. - (7) Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows. arXiv preprint arXiv:1505.05770, 2015.
- (8) Diederik P. Kingma, Tim Salimans, and Max Welling. Improving variational inference with inverse autoregressive flow. CoRR, abs/1606.04934, 2016.
- (9) Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. 2016.
- (10) Tim Salimans, Diederik P. Kingma, and Max Welling. Markov chain monte carlo and variational inference: Bridging the gap. In Francis R. Bach and David M. Blei, editors, ICML, volume 37 of JMLR Workshop and Conference Proceedings, pages 1218–1226. JMLR.org, 2015.
- (11) Arindam Banerjee, Inderjit S. Dhillon, Joydeep Ghosh, and Suvrit Sra. Clustering on the unit hypersphere using von mises-fisher distributions. J. Mach. Learn. Res., 6:1345–1382, December 2005.
- (12) Siddharth Gopal and Yiming Yang. Von mises-fisher clustering models. In Tony Jebara and Eric P. Xing, editors, Proceedings of the 31st International Conference on Machine Learning (ICML-14), pages 154–162. JMLR Workshop and Conference Proceedings, 2014.
-
(13)
Marco Fraccaro, Ulrich Paquet, and Ole Winther.
Indexable probabilistic matrix factorization for maximum inner
product search.
In
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA.
, pages 1554–1560, 2016. - (14) Arindam Banerjee, Inderjit Dhillon, Joydeep Ghosh, and Suvrit Sra. Generative model-based clustering of directional data. In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’03, pages 19–28, New York, NY, USA, 2003. ACM.
- (15) Alex Graves. Stochastic backpropagation through mixture density distributions. CoRR, abs/1607.05690, 2016.
- (16) Lars Maaloe, Casper Kaae Sonderby, Soren Kaae Sonderby, and Ole Winther. Auxiliary deep generative models. CoRR, abs/1602.05473, 2016.
- (17) Scott W. Linderman David M. Blei Christian A. Naesseth, Francisco J. R. Ruiz. Rejection sampling variational inference. 2016.
- (18) Adi Ben-Israel. The change-of-variables formula using matrix volume. SIAM Journal on Matrix Analysis and Applications, 21(1):300–312, 1999.
- (19) Adi Ben-Israel. An application of the matrix volume in probability. Linear Algebra and its Applications, 321(1):9–25, 2000.
- (20) Marcel Berger and Bernard Gostiaux. Differential Geometry: Manifolds, Curves, and Surfaces: Manifolds, Curves, and Surfaces, volume 115. Springer Science & Business Media, 2012.