Normal Similarity Network for Generative Modelling

05/14/2018
by   Jay Nandy, et al.
2

Gaussian distributions are commonly used as a key building block in many generative models. However, their applicability has not been well explored in deep networks. In this paper, we propose a novel deep generative model named as Normal Similarity Network (NSN) where the layers are constructed with Gaussian-style filters. NSN is trained with a layer-wise non-parametric density estimation algorithm that iteratively down-samples the training images and captures the density of the down-sampled training images in the final layer. Additionally, we propose NSN-Gen for generating new samples from noise vectors by iteratively reconstructing feature maps in the hidden layers of NSN. Our experiments suggest encouraging results of the proposed model for a wide range of computer vision applications including image generation, styling and reconstruction from occluded images.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset