Nonparametric Two-Sample Test for Networks Using Joint Graphon Estimation
This paper focuses on the comparison of networks on the basis of statistical inference. For that purpose, we rely on smooth graphon models as a nonparametric modeling strategy that is able to capture complex structural patterns. The graphon itself can be viewed more broadly as density or intensity function on networks, making the model a natural choice for comparison purposes. Extending graphon estimation towards modeling multiple networks simultaneously consequently provides substantial information about the (dis-)similarity between networks. Fitting such a joint model - which can be accomplished by applying an EM-type algorithm - provides a joint graphon estimate plus a corresponding prediction of the node positions for each network. In particular, it entails a generalized network alignment, where nearby nodes play similar structural roles in their respective domains. Given that, we construct a chi-squared test on equivalence of network structures. Simulation studies and real-world examples support the applicability of our network comparison strategy.
READ FULL TEXT