Nonparametric geometric outlier detection

11/13/2018
by   Matias Heikkilä, et al.
0

Outlier detection is a major topic in robust statistics due to the high practical significance of anomalous observations. Many existing methods are, however, either parametric or cease to perform well when the data is far from linearly structured. In this paper, we propose a quantity, Delaunay outlyingness, that is a nonparametric outlyingness score applicable to data with complicated structure. The approach is based a well known triangulation of the sample, which seems to reflect the sparsity of the pointset to different directions in a useful way. In addition to appealing to heuristics, we derive results on the asymptotic behaviour of Delaunay outlyingness in the case of a sufficiently simple set of observations. Simulations and an application to financial data are also discussed.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro