Nonparametric estimator of the tail dependence coefficient: balancing bias and variance

11/22/2021
by   Matthieu Garcin, et al.
0

A theoretical expression is derived for the mean squared error of a nonparametric estimator of the tail dependence coefficient, depending on a threshold that defines which rank delimits the tails of a distribution. We propose a new method to optimally select this threshold. It combines the theoretical mean squared error of the estimator with a parametric estimation of the copula linking observations in the tails. Using simulations, we compare this semiparametric method with other approaches proposed in the literature, including the plateau-finding algorithm.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro