Nonlocal diffusion of variable order on graphs
Some aspects of nonlocal dynamics on directed and undirected networks for an initial value problem whose Jacobian matrix is a variable-order fractional power of a Laplacian matrix are discussed here. Both directed and undirected graphs are considered. Under appropriate assumptions, the existence, uniqueness, and uniform asymptotic stability of the solutions of the underlying initial value problem are proved. Some examples giving a sample of the behavior of the dynamics are also included.
READ FULL TEXT