Nonlinearization of two-parameter eigenvalue problems
We investigate a technique to transform a linear two-parameter eigenvalue problem, into a nonlinear eigenvalue problem (NEP). The transformation stems from an elimination of one of the equations in the two-parameter eigenvalue problem, by considering it as a (standard) generalized eigenvalue problem. We characterize the equivalence between the original and the nonlinearized problem theoretically and show how to use the transformation computationally. Special cases of the transformation can be interpreted as a reversed companion linearization for polynomial eigenvalue problems, as well as a reversed (less known) linearization technique for certain algebraic eigenvalue problems with square-root terms. Moreover, by exploiting the structure of the NEP we present algorithm specializations for NEP methods, although the technique also allows general solution methods for NEPs to be directly applied to the problem. The nonlinearization is illustrated in examples and simulations, with focus on problems where the eliminated equation is of much smaller dimensions than the other two-parameter eigenvalue equation, in particular applications in domain decomposition. A general analysis is also carried out under the assumption that a backward stable eigenvalue solver method is used to solve the eliminated problem, leading to the conclusion that the error is benign.
READ FULL TEXT